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Scaling laws of passive tracer dispersion in the turbulent surface layer
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Experimental results for passive tracer dispersion in the turbulent surface layer under stable conditions are
presented. In this case, the dispersion of tracer particles is determined by the interplay of three mechanisms:
relative dispersion (celebrated Richardson’s mechanism), shear dispersion (particle separation due to variation
of the mean velocity field) and specific surface-layer dispersion (induced by the gradient of the energy dissi-
pation rate in the turbulent surface layer). The latter mechanism results in the rather slow (ballistic) law for the
mean squared particle separation. Based on a simplified Langevin equation for particle separation we found
that the ballistic regime always dominates at large times. This conclusion is supported by our extensive
atmospheric observations. Exit-time statistics are derived from the experimental data set and show a reasonable
match with the simple dimensional asymptotes for different mechanisms of tracer dispersion, as well as
predictions of the multifractal model and experimental data from other sources.
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I. INTRODUCTION

The phenomenon of scalar turbulence or random advec-
tion of tracer particles by random turbulent flow has become
a topic of significant attention during the last few years
[1-7]. This is not only due to its significance for understand-
ing the transport processes in global geophysical systems
(e.g., the atmosphere and oceans) and as a theoretical frame-
work for the design of some technological applications (mix-
ers, chemical reactors, combustion chambers), but is perhaps
even more important as an instructive example of modern
methods of theoretical physics applied to a highly nonequi-
librium dynamic system in order to deduce new phenom-
enology and a wealth of analytical results that can be vali-
dated numerically and experimentally. Known examples are:
analytical scaling for white-noise scalar turbulence (solutions
of the Kraichnan model [1-3]); application of conformal in-
variance to the two-dimensional tracer flow [4]; renormaliza-
tion group formalism; multifractal structure of tracer statis-
tics [1] and others (see review [8] and references therein).
Remarkably, the recent applications of the theoretical frame-
work for this phenomena provide rigorous ways to overcome
the initially restrictive assumptions of the underlying model
of locally isotropic turbulence by incorporating effects of
anisotropy, flow boundaries, mean velocity shear, buoyancy,
etc. and enable the analytical calculations of associated cor-
rections [9,5,10].

In this paper we report our experimental results on the
dispersion of passive tracers in the turbulent surface layer.
The wall-bounded turbulent flow provides flexible settings to
study the effects of mean velocity shear (i.e., nonuniform
wind) and system boundaries (the underlying surface) on the
passive scalar dispersion.

The celebrated Richardson law [11] established the
growth of the mean interparticle distance,

(R*(1)) ~ \1", (1)

where n=3, \ is a scale-independent dimensional parameter,
and became a signature of turbulent dispersion (see review
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[12]). It was later recognized by Oboukhov and Corsin that
this law is a direct consequence of Kolmogorov scaling in
turbulence [13,3]. Indeed, from a power-law assumption for
the velocity differences dv ~dR/dt>R" and [Eq. (1)] it is
easily to derive Roc/"1=" or h=1-2/n. The latter expres-
sion leads to the Richardson law with (R%(¢))o 73 for the
Kolmogorov scaling #=1/3. This is a reflection of an inti-
mate and well-known connection between the power expo-
nent of the particle separation law n in Eq. (1) and the pas-
sive tracer statistics [3]. From a mathematical point of view,
this connection can be translated into a scaling law of the
correlation functions of the tracer concentration that includes
the parameter n [13,3],

Sy(R) =2[F,(0) - Fy(R)] < R*", n=1/(1-h), (2)

where
Fy(R) =(C(x +R,1)C(x,1)) (3)

is the pair-correlation function.

Different values of n (the scaling exponent of the mean
squared displacement) have been derived theoretically and
experimentally for different kinds of turbulent flow (see
[12,6] and references therein). Contrarily, a particular value
of n can be associated with a particular energy injection
mechanism of turbulence and can be used for characteriza-
tion of its dispersive properties. As was mentioned above, for
the tracer dispersion by Kolmogorov (locally isotropic) tur-
bulence, n=3 (Richardson law). For Bolgiano-Obukhov
(buoyancy dominated) turbulence, n=5 [10]. For turbulence
with mean velocity shear it was recently deduced [6] that n
=6 (for particle separation along the mean velocity) and n
=4 (for separation in the transverse direction). It is worth
noting that in all latter cases the separation of particles is
always faster than in the standard Richardson regime (i.e.,
without velocity shear). For surface-layer turbulence (i.e.,
turbulent motion near a flow boundary), whose scaling prop-
erties are significantly different from the isotropic Kolmog-
orov model, the value of n can eventually deviate from Ri-
chardson’s prediction. Particularly, the self-similarity
arguments applying to this case lead to much lower values of
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the scaling exponent of the mean squared displacement (n
=2 or so-called “ballistic” regime, since Rocf) [14]. Finally,
for the “combined” case (turbulent flow near a boundary and
a mean velocity shear) Ref. [9] argues that there is no uni-
versal value for the parameter / in Eq. (2) (and hence neither
for exponent n).

From simple dimensional analysis it is obvious that the
dimensional parameter N in Eq. (1) should also be different
for the different values of n, i.e., for the particular type of
turbulent flow. For instance, in the case of Kolmogorov tur-
bulence A=€ (€ is the kinetic energy flux); but for surface-
layer turbulence, the friction velocity v, (and not the dissi-
pation rate €) becomes the only similarity parameter [13],
A=v? (therefore the expression A>=(v.r)? provides the di-
mension of R?).

The same dimensional analysis also leads to the important
conclusion that the ballistic regime (and not the shear effect)
is the universal long-time asymptote of the dispersion pro-
cess of the tracer particle in the turbulent surface layer (see
[14] and refs therein). This can be easily seen based on the
following arguments. Let us assume that in addition to v.,
the problem is characterized by a length scale [ (i.e., initial
separation of the particles or the initial distance to the
ground). Then the dimensional arguments translate Eq. (1)
into

(R*(t)) ~ N", N=0"1*". (4)

A naive conjecture at this point would be that a dispersion
mechanism with the highest value of n (e.g., shear) will
dominate over large time periods (i.e., at t=1/v.). However,
more careful analysis casts doubt on this conclusion. Indeed,
for t>1/v, particles should “forget” about their initial posi-
tions and the parameter / should be dropped from the expres-
sion for the particle separation [Eq. (4)] all together. We can
see that the only possibility for this is the case when n=2:
conversion to the ballistic regime.

This variety of possible scenarios of tracer dispersion in
the surface-layer turbulence and some ambiguity of available
analytical predictions (at least when being straightforwardly
applied) motivated our experimental study of this phenom-
enon.

II. EXPERIMENTAL PROCEDURE

Scrutinizing measurements at a given location within the
Taylor hypothesis of frozen turbulence R=Ut, where U
=const; it follows from Eq. (1) that

S)(R) = 2[F5(0) — F5(R)] o« R*" o« (U, (5)

so single point time measurements of concentration also
show power-law behavior with the same characteristic expo-
nents as the spatial measurements.

We estimated the value of parameter n in Eq. (5) based on
extended atmospheric observations of the tracer concentra-
tions. A continuous (and relatively stable) influx of particles
into the turbulent flow was supplied by the anthropogenic
activity in the surrounding urban areas (about 20 km in size).
This “highly distributed” source of particles maintained the
quasiequilibrium (and on average, well mixed) tracer distri-
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bution which was validated by our long-term observations.
The observation tower was at a height of H=12 m and the
tracer concentration was measured by means of scattered
light intensity off incoming particles. Continuous observa-
tion was undertaken over a period of 21 days with an air
sample taken every 5 s (30 1 per sample). The instrumenta-
tion provided total particle count as well as their size distri-
bution in the range of 1-10 um. Local meteorological ob-
servations (three conventional meteorological stations in the
vicinity) and global observations (with resolution about 1
km) were available to draw the conclusions about local me-
teorological conditions of the surface layer (stability, profiles
of wind speed and temperature). Wind speed and temperature
were also measured directly at the sampling point (H
=12 m).

As usual in meteorological studies, we anticipated that the
night time observations would correspond to the case of the
boundary layer under stable or neutral conditions. For con-
vective turbulence to be generated, an intensive heat flux
from the underlying surface has to occur and this, of course,
should include the significant effect of solar radiation. In-
deed, in our experimental results the latter condition is bound
to the daytime observations.

III. DATA ANALYSIS

Undertaking correlation analysis of the time series of the
concentration C(7), of single point measurements, we found
that the minimum time span that provides reliable statistics
of the process should be more than three hours. As the first
step, we plotted S,(R) as a function of R=Ut on a log-log
scale and evaluated the scaling exponent n from the expres-
sion S,(R) = (Ut)*"" predicted by Egs. (3) and (5). Some ex-
amples of these plots are depicted in Fig. 1.

In this paper we report on the analysis of the data that
corresponds to the stable conditions of the turbulent surface
layer (results on convective tracer dispersion will be pub-
lished elsewhere). As was mentioned above, the turbulent
motion in this case is determined only by a one dimensional
parameter—the friction velocity v., which provides the scale
for velocity fluctuations. This self-similarity property of the
surface-layer turbulence is expressed by the well-known re-
lations [13]

3
dU(Z)zﬁ’ el ©)
dz KZ KZ
where z is the vertical distance from the underlying surface
and € is the dissipation rate, k=0.4.

The values of wind speed relevant to the data series de-
picted in Fig. 1 are listed in Table I. By using the logarithmic
profile U(z)=(v./x)In(z/z,) followed from (6) we can esti-
mate v, =cUpy[c=x/In(H/zy)] and then e=v?/ kz,. Assuming
a typical value of roughness height zy=~0.1 m leads to the
estimates ¢=~0.01 and €=0.004 kg m?/s® for Uy
=5.52 m/s. The parameter Ty~ H/U(H)~H/cv, corre-
sponds to the time scale for a particle to reach the underlying
surface and was of order 10 s.

The low relative fluctuations of the wind speed were one
of the reasons that these data series were selected for analy-
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FIG. 1. Structure function of the tracer concentration S,(R)
x R¥x Uyt* on a log-log scale. Inset shows the estimation of how
the scaling exponent of the mean interparticle displacement
(R*(#))o< 1" converges over time. Each data set corresponds to a
maximum of 4 h of observations and wind velocities outlined in
Table I: +, Sample 1; O, Sample 2; *, Sample 3; @, Sample 4; <,
Sample 5; [, Sample 6; <, Sample 7; A, Sample 8; and V, Sample
9. @=2/3 is the Richardson regime, a=2/5 is the velocity-shear
mechanism and a=1 is the ballistic regime. Global convergence to
the ballistic regime (w=1) is clearly visible.

sis. It was also a justification for the application of the Taylor
hypothesis to these data sets. It is worth noting that a par-
ticular value of the mean wind velocity has no relevance to
the main reported result of our paper; it will only change the
point at which a data series will approach the global asymp-
tote in Fig. 1. It will not change either the existence of, or the
slope of this asymptote.

The dynamics of particle separation in the turbulence sur-
face layer can be described by modifying the Langevin equa-
tion for particle separation [15]. By including the shear term
proposed in [6] we can arrive at the following system:

dR, = G(R,)dt + D(R)dt + \2KdW, (7)
dR | = D(R)dt + \2KdW, (8)

where G(R,)=(dU/dz)R, is the velocity-shear term, D(R)
=(dK/dR+2K/R) is the drift term, K(R)=Be*R*? is the

TABLE 1. Apropos mean wind speeds Uy for Fig. 1.

Uy
Sample (m/s)

4.15*0.12
2.94+0.11
2.25+0.30
3.85+0.12
5.52%0.16
7.42*0.05
4.27%0.21
2.49£0.06
3.20%0.12

O 0 3 N kAW =
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diffusivity, B=const, €(R) is the local dissipation flux (which
describes the local activity of the turbulent flow) Eq. (6), dW
is an isotropic Brownian motion, R, is the vertical compo-
nent of separation, R, is its horizontal component and R |
=[R,,R,] are the components perpendicular to the mean
shear; so R2=R)2C+R2l.

For t<Ty, U'(z) ~v./kH, €(R) = e(H)=const, so G<D.
By placing R,~R,~R, ~R, we recover the standard Rich-
ardson regime R?of’ [6]. For the intermediate times (r
=~Ty) the velocity-shear mechanism dominates (G> D) and
following arguments of [6] we arrive at faster separation of
particles (R*>« " with 4<n=6). Finally, at the limiting case
t=Ty the separation becomes slower (ballistic with R ).
The latter can be deduced from the system [Eq. (7)]. At ¢
>Ty we can use estimates: U'(z) ~v./kR,, 6(R)=U;:/KRZ,
which leads to a simplified system for the long-time asymp-
totes

dR, % \v,RAW, dR, = \v,RdAW, 9)

since R,~R, ~R.
We can see from the diffusive equation that the associated
pdf p(R,t) can be derived

ap a( ap)
Lo, —RE, 10
ot~ T oR\" GR (10)

where v is the constant of order of unity. This equation has a
straightforward solution,
R
exp(— ) (11)

YU

R.1)=
p(R.1) ot

It is evident from here that the main asymptote of the model
as t— is the ballistic regime (R(#))=[{Rp(R,1)dR ~v.dt.

The existence of this global ballistic asymptote often sup-
presses the effect of the shear dispersion and clearly emerges
from our experimental data (see Fig. 1). We observe that at
the short-time intervals, close to =0, the parameter n=3
(Richardson regime), then it reaches maximum: n=~5 (shear
dispersion) and finally n gradually decays to the ballistic
value: n=2. It is worth noting that the long-time ballistic
limit n=2 is in agreement with recent experimental data on
atmospheric dispersion 2=n<3, see [14,12] and references
therein.

The nontrivial scaling properties of tracer dispersion in
the turbulent surface layer can be also demonstrated by
means of exit-time statistics for the concentration time series
[8]; which are statistics of time intervals in which a measured
value of concentration exits through a set of thresholds. By
scanning the time series for a given threshold 6C, one can
recover a set of times 7,(5C), where the measured concentra-
tion reaches this threshold. This set can then be used to cal-
culate the Inverse Structure Function (for details see [8,10]),

3,(8C) = (#(5C)). (12)

A comprehensive analysis of the properties of the inverse
structure function can be fulfilled by applying the well-
known multifractal approach [8,16]. This results in the fol-
lowing scaling [8,16],
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FIG. 2. Mean inverse structure function for 12 experimental
data sets (). Error bars correspond to = mean standard deviation.
The dashed line represents a linear best fit over 1 =g =35 predicted
by Eq. (14) [16]. Experimental values for temperature fluctuations
(V) of [17] are presented for reference.

3,(8C) = (SOX9),  x(q) = mhin{[q +3-D(h))/h},
(13)

where £ is the index of singularity from the range [A,,,,, 20 ]
such that t~ (8C)" and D(h) is the fractal dimension of the
set with a singularity 4. It is worth noting that particular
values h=1/3, h=1/5, and h=1/2 correspond to the Rich-
ardson law, the shear dispersion and the ballistic scaling dis-
cussed above.

According to [16], the function [¢+3—D(h)]/h reaches its
minimum at the upper boundary of the singularities’ range,
so we can set h=h,,,, and write

X(@) =g+ 3 = D(hy0) V- (14)

This leads to the important conclusion that x(g) is a linear
function of ¢ (i.e., no intermittency correction), which has
been verified by numerical simulations and by some limited
experimental data [16]. This conclusion was also validated
against our experimental data set and the results are shown in
Fig. 2. We observe that indeed x(gq) closely follows the pre-
dicted linear trend for ¢=1 and provides a reasonable match
with the experimental data available in the literature [17]. A
change in slope near the value g=1 can be attributed to a
contribution of the slow (differentiable) components of tur-
bulent motion [10]. A model for this effect will be discussed
elsewhere.

We also present a plot of the mean exit-time 3,(5C)
=(t(8C)) as a function of the concentration threshold 6C in
Fig. 3. Cy and its associated 7, are located at the concentra-
tion minima for each sample, and are used to collapse data
only. Three asymptotes corresponding to the regimes dis-
cussed above are also depicted for comparison. These as-
ymptotes can be easily established from Eq. (5) based on
simple dimensional arguments. Indeed, for the short times ¢
< Ty we can assume Richardson (or Corsin-Obukhov) scal-
ing 5C '3 and derive (t(8C))(SC)3. Similarly, for the
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FIG. 3. Exit-time for the first moment of the concentration time
series. Different regimes of dispersion correspond to the different
power-law asymptotes (see text). Scaling factors C, #, were used
for collapsing data thus a better visual appearance (see text).

shear dispersion we can write (#(8C))o(5C)", n=5 [6];
while for the ballistic regime at the longer times (1> T};) we
arrive at the scaling (t(8C))« (8C)>. A subsequent change of
regime as discussed above, corresponding to the curve
(1(8C)) deviating from one asymptote to another, is clearly
visible. From this plot it is also evident why in the case of
wall-bounded turbulent dispersion it is not possible to assign
any universal value for parameter n in the scaling law
(t(8C))yoc (8C)" [similarly in Eq. (2)], which is in agreement
with the conclusions of [9].

IV. CONCLUSIONS

We presented experimental results for passive tracer dis-
persion in the turbulent surface layer under stable conditions.
In this case the dispersion of tracer particles was affected by
the mean velocity gradient and flow boundaries. We found
that our observations can be intrinsically explained with the
three-stage model of tracer dispersion. During the first stage
of separation (I'<H/v., where H is the observation height
and v, is the friction velocity) tracer particles obey the stan-
dard Richardson model. During the second stage (T
~H/v,) the shear mechanism of dispersion dominates [6].
Finally, when (7> H/v.) the shear mechanism is followed
by a transition to the ballistic regime of dispersion induced
by the specific scaling properties of the turbulence in the
surface layer. This scenario of interparticle distance seems to
be in agreement with atmospheric observations [14,12] as
well as experimental results on tracer dispersion by turbulent
surface flow in water channels [18]. We found that the bal-
listic regime always suppressed the velocity-shear effect pre-
dicted in [6] at the later stage of dispersion, resulting in
much slower rate of particle separation [i.e., lower value of
parameter n in Eq. (1)]. Exit-time statistics were derived
from the experimental data set and showed a reasonable
match with the simple dimensional asymptotes, as well as
predictions of the multifractal model and experimental data
from other sources.
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